Microbiology in details Latest technological development in field of Biotechnology,new drug molecules ,enzymes ,new drug molecule synthesis methods.Diabetis treatment , hybridoma technique , human insuline

Monday, May 5, 2008

Radiation sterilization

Radiation sterilization
Methods exist to sterilize using radiation such as electron beams, X-rays, gamma rays, or subatomic particles.
--->Pharmaceutical Regulatory affairs <----
Gamma rays are very penetrating and are commonly used for sterilization of disposable medical equipment, such as syringes, needles, cannulas and IV sets. Gamma radiation requires bulky shielding for the safety of the operators; they also require storage of a radioisotope (usually Cobalt-60), which continuously emits gamma rays (it cannot be turned off, and therefore always presents a hazard in the area of the facility). Electron beam processing is also commonly used for medical device sterilization. Electron beams use an on-off technology and provide a much higher dosing rate then gamma or x-rays. Due to the higher dose rate, less exposure time is needed and thereby any potential degradation to polymers is reduced. A limitation is that electron beams are less penetrating than either gamma or x-rays. X-rays are less penetrating than gamma rays and tend to require longer exposure times, but require less shielding, and are generated by an X-ray machine that can be turned off for servicing and when not in use. Ultraviolet light irradiation (UV, from a germicidal lamp) is useful only for sterilization of surfaces and some transparent objects. Many objects that are transparent to visible light absorb UV. UV irradiation is routinely used to sterilize the interiors of biological safety cabinets between uses, but is ineffective in shaded areas, including areas under dirt (which may become polymerized after prolonged irradiation, so that it is very difficult to remove). It also damages many plastics, such as polystyrene foam. Further information: Ultraviolet Germicidal Irradiation Subatomic particles may be more or less penetrating, and may be generated by a radioisotope or a device, depending upon the type of particle. Irradiation with X-rays or gamma rays does not make materials radioactive. Irradiation with particles may make materials radioactive, depending upon the type of particles and their energy, and the type of target material: neutrons and very high-energy particles can make materials radioactive, but have good penetration, whereas lower energy particles (other than neutrons) cannot make materials radioactive, but have poorer penetration.
Irradiation is used by the United States Postal Service to sterilize mail in the Washington, DC area. Some foods (e.g. spices, ground meats) are irradiated for sterilization (see food irradiation).

No comments:

About This Blog